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Abstract. KFeFd is a well characterized planar antiferromagnet with S = 2.  and is an 
excellent example of a two-dimensional Heisenberg antiferromagnet. Using neutmn-scattering 
techniques. a study of both the static and dynamic critical behaviour above the N6el temp" ,  
TN = 136.755.0.35 K, has been undertaken. It is found k t  in the region above 1.04T~. the static 
Correlation length, the StNCtW-factOr peak intensity and the width of ule dynamic scattering 
are all qualitatively described by the theories developed for Heisen& antiferromagnets. ?he 
data have been compared with both the theory for a quantum Heisenberg antiferromagnet, as 
developed for L a D O &  and also the model for a classical Heisenberg antiferromagnet. Both 
these theories describe the data equally well. Below 1.04T~ the system is expected to behave 
like a two-dimensional Ising system 

1. Introduction 

With the discovery of the cuprate superconductors [l] has come a renewed interest 
in two-dimensional antiferromagnets [Z]. In the undoped phase these cuprates are not 
superconducting but are found to order antiferromagnetically [3] and it is believed that the 
magnetism plays an important part in the processes that lead to the superconducting state 
[4]. This new impetus has renewed interest in the theory of the critical behaviour of two- 
dimensional systems, and descriptions have now been developed for the two-dimensional 
quantum Heisenberg antiferromagnet (QHAF) 1.51. This theory is a renormalization of the 
classical lattice rotator model (CLRM) [6] and has been successfully used to describe the 
S = $ QHAF LazCu04 [5] and the S = 1 system KzNiF4 [7]. 

Many experiments were performed on the two-dimensional antiferromagnets with the 
KzNiF4 structure in the 1970s [8,9]. In these systems the low-temperature behaviour is 
dominated by small king-like anisotropy terms, leading to two-dimensional Ising critical 
behaviour below TN. For KzNiF4 it is found that the king behaviour persists above TN 
until a crossover to a Heisenberg region is reached. Birgeneau and co-workers fitted the 
static correlation length of KzNiF4 to the two-dimensional king model between TN and 
1.052" [SI, and above this showed [7] that the system gives excellent agreement with the 
two-dimensional isotropic QHAF theory developed by Chakravarty, Halperin, and Nelson 

KFeF4 [lo, 111 is similar in many ways &,the KINiF, systems. Like these materials it 
has magnetic planes separated from each other by sheets of non-magnetic ions, leading to 
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weak interplanar interactions. In KFeF4 this leads to a ratio of the order of lo4 between 
interplanar and intraplanar interactions. It also has a weak king-like anisotropy term, which 
aligns the spins along the crystallographic c-axis. This term dominates the critical behaviour 
below TN. hevious work [19] has shown that the staggered magnetization has a power-law 
temperature dependence with ,9 = 0, .130 f 0.005 [ll], close to the theoretical prediction 
for a two-dimensional Ising system [12]. 

The nature and strength of the interactions were determined by measuring the spin-wave 
dispersion curves [ 19,111, and the purpose of this work is to study how these interactions 
affect the magnetic critical behaviour (both static and dynamic) of KFeFd above TN. A single 
crystal of KFeF4 was studied with inelastic-neutron-scattering techniques. The results from 
this experiment have been compared to the theory for both a two-dimensional king system 
and the models for a Heisenberg antiferromagnet in order to study the crossover behaviour. 

The next part of this paper is a summary of the theoretical results for the two-dimensional 
Heisenberg and the two-dimensional Ising models. Following this, there is a discussion of 
the experimental arrangement and the analysis of the data. Finally we present a comparison 
of the results extracted from the data with the theories. 

2. Theory 

Two-dimensional Heisenberg antiferromagnets have no long-range order (LRO) above T = 
0 K. It is the weak anisotropies or interplanar interactions in real systems that lead to LRO at 
finite temperatures. In the theories described below, it is assumed that the ground state with 
conventional antiferromagnetic order occurs only at T = 0 K and the correlation functions 
for the LRO decay are described from this point rather than from a finite Nee1 temperature 
as in real systems. 

The CLRM [6] predicts that the correlation length in a classical Heisenberg 
antiferromagnet is given by 

where Be = 0.01, am is the nearest-neighbour separation, and p is the classical value of 
the spin-wave stiffness constant without the spin fluctuation terms (see equation (3) below). 

CHN have taken the classical model for a two-dimensional Heisenberg antiferromagnet 
and have renormalized the results to take into account quantum fluctuations, and introduced 
the thermal de Broglie wavelength, hC/kgT, as a short-wavelength cut-off instead of a 
constant multiplied by the lattice spacing am, which is used as a length scale in the 
classical problem. Using this method they have produced a model for the QHAF to 
describe the instantaneous correlations, which gives reasonable agreement with the available 
experimental data [5,7]. 

The CHN theory predicts that the correlation length is given by 

Notice the difference in the denominators in equations (1) and (2); this difference arises 
from using the thermal cut-off instead of a constant multiplied by the lattice spacing. In 
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equation (2), p is the spin-wave stiffness constant defined such that 

2np = ZRJ"S~Z,(S)~Z,(S) 

z, = 1 +0.15s/zs + O(l/ZS)2 

z. = 1 - 0.552129 + 0(1/2S)2 

with 3" being the nearest-neighbour exchange constant and S the spin. The 2, and Z, 
terms are correction factors to take account of the quantum fluctuations. For KFeF4, S = 3 
and JNN has been taken as the average of the nearest-neighbour in-plane exchange constant, 
2.445 meV. The correction terms change the spin-wave stiffness constant by 5% from its 
classical value for s = 2 systems, while for s = 4 systems the quantum fluctuations are 
much more important and the spin-wave stiffness constant is changed by 40%. 

CHN predict that the constant C, has the following form: 

with 

c, = 2nszxzc/J3 (7) 

which gives Cc z 0.06 to within 30% for S = f. This is almost twice as large as the 
value predicted by Manousakis and Salvador [131 using Monte Carlo simulations. The 
uncertainty in the CHN theory arises from the uncertainty in Et .  the value calculated for 
the classical-model scaling factor. Hasenfratz and Niedemayer [14] have predicted that the 
prefactor is 

C, = e/8C,. (8) 

This gives C, N 0.07 for S = i. It is clear from this discussion that the scaling constant, 
Ct , is not a well known parameter. 

The structure factor for both the U R M  and the QHAF models depends upon the correlation 
length in the following way: 

S(0) = C S ~ ~ / [ ( ~ X P / ~ E J )  + 112 (9) 

where C, is another constant. 
Equations (ll-(9) then fully describe the static correlation function for both the CLRM 

The dynamic response of the two-dimensional Heisenberg system has been studied by 
Tyc et ai [15]. The frequency width of the correlation function S(k, o), at k = 0, is given 

and the QHAF models. 

by 
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where, if c is the spin-wave velocity in millielectronvolt hgstroms, and r is in units of 
millielectronvolts, y E~ 0.85 i 0.15 [16]. For KFeF4 c is obtained from the dispersion 
curves [ 111 as c = 70 meV A. 

The data were also fitted to the power laws such as characterize the temperature 
dependence close to TN when TN # 0. For example, the correlation length was fitted 
to 

$/a" = 1/Ka" = Kat-'. (11) 

Here K is known as the inverse correlation length. For a two-dimensional king system 
U = 1 and KO is a scaling constant, which for a twodimensional square lattice has the 
value 1.763 [17]. 
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Figure 1. The temperature dependence of the (I,  1.0) magnetic Bragg peak, which measures 
the extent of the thrre-dimensional ordering, is shown on the left-hand side and the temperature 
dependence of the scattering for a wavevector transfer (L,l.O.53), which is ptoponional to the 
static susceptibility. on the right. 

3. The sample and experimental preliminaries 

The KFeF4 single crystal was grown at the Universit6. du Maine using the Bridgman 
Stockbarger technique in a platinum crucible. The crystal was a small plate 4 x3 x 15 m3. 
This crystal was used in a previous neutron-scattering study [IO]. In the (h, h, I) scattering 
plane the mosaic spread is 0.09". At roomtemperature KFeFd has an orthorhombic structure, 
with a = 7.81 A, b = 1.64 A, c = 12.40 A. 

From ow low-tempbrature studies (on a different sample) we found that the average 
of the exchange interacfions in the a and b directions was = 2.455 meV, where the 
Hamiltonian is of the form 



Static and dynamic critical behaviour of KFeFd 6683 

and gpB HA = 0.12 meV is the anisotropy energy, which tends to align the spins along the 
crystallographic c-axis. 

The crystal was mounted with the (h, h, I )  plane as the scattering plane and was placed 
in a variabletemperature, closed-cycle cryostat so that the temperature could be varied. 

(h,h,0.53) 
Figure 2. The critical scaltering intensity at 147 K (filled circles) and 180 K (open circles). 

The neutron scattering was studied using the TAS6 instrument at the Risg facility in the 
two-axis mode, the energy analyser having been removed in order that the energy integrated 
intensity could be measured. A pyrolytic-graphite monochromator was used to produce a 
monochromatic beam of neutrons with a wavevector of 2.51 A-', and a pyrolytic-graphite 
filter was placed between the monochromator and sample to suppress higher-order neutrons. 
The collimation used was 30' before the monochromator, 36' between the monochromator 
and sample and 22' between the sample and detector. The resolution function was measured 
using the (110) magnetic Bragg reflection and was found to have a width (FWHM) along 
(<. <, 0) of 0.027 A-' and vertically of 0.113 A-'. 

The transition temperature, TN, of KFeFd was determined by measuring the temperature 
dependence of the (1,l.O) magnetic Bragg peak, which measures the extent of the three- 
dimensional ordering, and from the temperature dependence of the scattering observed with a 
wavevector transfer of (1,1,0.53), which is a measure of the two-dimensional susceptibility. 
The results are shown in figure 1 and give a transition temperature TN = 136.75 & 0.25 K, 
in good agreement with previous studies of KFeFd [17,18]. 

The static critical scattering was then measured by scanning the wavevector transfer 
along the line (<, <. 0.53) in reciprocal space. This point was chosen so that the scattered 
wavevector was parallel to the c-axis sa that the scattering is only slowly varying, and the 
two-axis experiment integrates over the energy dependence of the critical scattering, while 
keeping the in-plane wavevector transfer constant. 
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The dynamic scattering was measured using the TAS6 spectrometer in the threeaxis 
mode by placing a pyrolytic-graphite analyser between the sample and detector. The energy 
resolution was obtained by using a vanadium sample and was found to be 1.012 meV 
(NVHM). The scans to measure the frequency dependence of the correlation function were 
taken with Q fixed at (1,1,0.53). This point was chosen as it was far away from the Bragg 
peaks and thus structural effects can be neglected when analysing the data, and also because 
there should be no contamination from h/2 scattering. 

z z < 
UJ 

10 

1 
140 160 180 200 

Figure 3. The variation of the static con'elation length with temperature. The solid line 
represents a fit to lhe CLW, the dashed to the QHAF model. 

A preliminary study of the dynamic scattering had previously been carried out at the 
ILL. on the IN3 instrument. The experimental arrangement was similar to that described 
in 11 I] and 1191. In these experiments the crystal was lined up with the ab-plane as the 
scattering plane, and the energy scans were performed with Q fixed at (1,1,0). This caused 
problems as there was a weak structural Bragg peak present, which made it difficult to 
analyse the data above 170 K. A comparison of the results extracted from the two sets of 
data will be made in section 5. 

4. Experimental results and analysis 

The static critical scattering was measured at 27 temperatures between TN and 240 K. As 
was expected, qualitatively the results show a decreasing intensity and an increasing width in 
wavevector as the temperature increases (see figure 2). For a Heisenberg system we expect 
the susceptibility to be isotropic, i.e. the susceptibility parallel and perpendicular to the spin 
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Figure 4. The svucmre factor as a function of temperamre compared wi.th the CLRM model (the 
solid line) and with the QHM model (the dashed line). 

direction to be the same. For an Ising system the parallel and perpendicular susceptibilities 
are different, with only the susceptibility parallel to the spin direction becoming critical at 
TN. When modelling the susceptibility we have taken the differences between the Heisenberg 
and the king-like systems into account. 

The data were analysed by assuming KFeFd is behaving l i e  an isotropic Heisenberg 
system and a single Lorentzian was used to describe the scattering: 

S(q)  = A/(q: +q,2 + e-*). (13) 

This was convolved with a triangular vertical resolution function and with a Gaussian form 
along the (c, 5. 0) direction. In addition the background was held fixed at 18 counts for a 
monitor 50000 (this corresponds to approximately 25 s). The results from these fits have 
been compared to the theories for the two-dimensional Heisenberg model and are shown in 
figures 3 and 4. The data for both the correlation length, (, and for the structure factor, 
S(0) = are well described by the theories in the region 1.04T~ < T < 1.4T~. In the 
fits, the spin-wave stiffness was held constant as determined in [19] and only the scaling 
prefactor was allowed to vary. A comparison of the prefactors obtained from the fits with 
the theoretical predictions will be given in the next section. 

The data were also analysed in terms of the Ising model in which the separate 
contributions from the parallel and perpendicular susceptibilities were taken into account as 
described in detail in [8]. The data near TN were fitted to a two-Lorentzian model 
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Figure 5. A comparison of the inverse correlation length with the two-dimensional king model. 
The filled circles are data extracted from fits to the Heisenberg model for the susceptibility 
(equation (13)). while the open circles are fits to an lsing model for the susceptibility 
(equation (14)). The solid line shows the slope expected for a d = 2 lsing system. 

For temperatures below 0.95T~, the experimental data were fitted to a single transverse 
Lorentzian and it was found that as the temperature T approached TN, A 1  and became 
constant, and these constant values were taken to describe the perpendicular susceptibility 
at TN; the inverse correlation range .$:'a' was 0.04. The longitudinal susceptibility above 
TN was then obtained by extrapolating the form for the transverse susceptibility above TN 
and fitting All and in equation (14) to the data. The extrapolation was performed in two 
ways. In both cases A 1  was held constant, hut in one case {L was held fixed at its value at 
TN and in the other case was assumed to vary with the king exponent, v = 1, but with 
a transition temperature reduced below TN by ATN. AT, was taken to be 12 K based on 
the parameters at TN. Both approaches gave very similar results for All and (11 and those 
of the latter approach are shown in figure 5 along with a comparison to the theory for the 
two-dimensional king model. The two sets of data points represent the fits from both the 
single- (equation (13)) and two-Lorentzian (equation (14)) models. The analysis for the 
two-component Lorentzian model fails close to TN due to the nmow width in reciprocal 
space of the susceptibility peak. The resolution function and the non-critical perpendicular 
component make an accurate measurement of the paraIlel contribution very difficult. The 
straight line represents a simulation of the two-dimensional king model, which we would 
expect to give a good description of the data asymptotically close to TN. As is seen, this 
is clearly not the case. This is different from the results for KzNiF4 [8], when a similar 
analysis was used. 

Measurements of the dynamic critical scattering were made at twelve temperatures above 
TN and the data were fitted to a single Lorentzian 
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Figure 6. The neutron scattering as a function of energy at 147 K, and a fit to Lorenmiin line 
shape. 

convolved with the energy resolution (see figure 6). The results'of these fits for r are shown 
in figure I along with the theory for the twb-dimensional Heisenberg systems. The data 
points at I70 K and above are clearly inconsistent with the other data points and the theory. 
This is possibly due to a breakdown of the analysis procedure as the mkgnetic con,tibution 
is then small. A similar divergence from the theory was als.0 seed in the corielation length 
and structure factor data at high temperatures, although this occurred at 196 K. The twa- 
dimensional Heisenberg theory for the dyn&c scattering has been fitted between 144 K 
and 160 K by adjusting the scaling prefactor to fit he data. S i i a r  data w,&e also colle2tedtea 
at the ILL and the resdts of the fits to these data are shown in tables 1 and 2. 

Table 1. A eomjrarison of the fits to the QHAF model with the theory. 

Parameters deduced from Cc 2zprplK x 2 '  ' 

e 0.0lOH.Q6l lOS0 4 
r ~ : r  0.0079*0.0001 1080 1 .05 
uL:r 0.0080&0.00M 1030 5.5 
CHN [SI 0.06 1080 

6.03 ~~ I080 MS [13] . ~ -  ~ 
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Figure 7. A comparison of the widths from the inelastic scattering, with the predictions of the 
CU(M (solid line) and the QHAF model (dashed line). 

Table 2. A comparison of the fits to the CUUI with the thwry. 

Parameters deduced from Be ~ P I K  x a  
c 0.052*0.001 1140 6 
c 0.033~0.003 1220f15 4 
TAS6:r 0.039+0.001 1140 0.8 
nL:r 0.036.tO.001 1090 6.5 
CLRM 161 0.01 1140 

5. A comparison of the experiment with theory 

The results of fitting the different experimental results for KFeF4 to the CLRM and the QHAF 
model are shown in tables 1 and 2 together with the theoretical predictions of CHN [5] 
and MS [13]. For both theories the scaling constants are approximately fourfold different 
from the theoretical values. For the QHAF model, the average value of Ce is 0.009f0.001. 
This is three to six times smaller than the theoretical predictions [5,13] of 0.03-0.06. 
It was, however, possible to fit the data for KFeF4 to the QHAF model in the region 
1.04 c T/T” i 1.4 provided that Cf was allowed to vary in agreement with the KzNiF, 
data. 

The fits to the CLRM give an average value of B f  = 0.040 f 0.010. This is four times 
larger than the theoretical value of Be calculated for the CLRM. This model also fitted the 
data in the temperature region 1.04T~ < T c 1.4TN. Both sets of fits (i.e. to the CLRM 
and the QHAF model) used values of the spin-wave stiffness constant as predicted from the 
dispersion curves and fitted the data equally well. 
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Good agreement with the QHAF theory was obtained for the results from K N i 4  [7] in 
the region 1.05T~ < T < IS&. The scaling prefactor for the correlation length obtained 
from the analysis was within 30% of the CHN theoretical prediction for Ct for an S = 1 
system. S i i l a r  analyses for Lay304  did not give such good agreement with the theory; 
Ct was twice that predicted by CHN for an S = antiferromagnet. The results of fitting 
the QHAF model to the KFeF4 data are not in such good agreement with the theoretical 
predictions as these experiments. The scaling factors are of the correct order of magnitude 
and show that qualitatively KFeF4 agrees with a two-dimensional Heisenberg model in the 
same temperature range as previous experiments. Since the values deduced for Ce are 
smaller than the predicted values while those for BE are larger, one possibility is that the 
appropriate model for KFeF4 is intermediate between the CLRM and the QHAF model. 

The previous study [19,11] of KFeF4 showed that below TN it exhibited two-dimensional 
Ising-like behaviour. Since with these data it has not been possible to fit to a power-law 
behaviour in the critical region above the transition temperature (see figure 5), we do not 
know exactly where the crossover from king-like to Heisenberg-like behaviour occurs. 
Theoretically the crossover occm [7] when hA(:/a)’ - 1. h A  is the ratio of the anisotropy 
energy to the nearest-neighbour exchange interactions and for KFeF4 hA = 0.005, implying 
Bra - 14 at the crossover. From figure 3 it may be seen that Bra = 14 when T = 143 K 
and indeed the theory for the two-dimensional Heisenberg models could not explain the 
data below this temperature. Note that in the region between TN and 143 K we were again 
unable to fit the data to power-law behaviour. 

6. Conelusions 

Above TN it has not been possible to fit the static correlation length of KFeF4 to the theory 
for a two-dimensional king model asymptotically close to TN as was done for K2NiF4 and as 
would be expected from theory. Above 1.04T~, KFeF4 seems to be in qualitative agreement 
with the theories for a two-dimensional Heisenberg system, although the prefactors are not 
in as close agreement with the theory as for the analyses of the other systems. The analysis 
seems to break down above 1.4T~. To study the crossover from two-dimensional king to 
two-dimensional Heisenberg behaviour it would be necessary to cany out an experiment 
with better resolution close to TN. 
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